Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8003): 407-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383779

RESUMO

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Assuntos
Aquaporina 4 , Autoanticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica , Neuromielite Óptica , Animais , Humanos , Camundongos , 60533 , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Células Epiteliais da Tireoide/imunologia , Células Epiteliais da Tireoide/metabolismo , Transcriptoma
2.
Virchows Arch ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112792

RESUMO

Integration of digital pathology (DP) into clinical diagnostic workflows is increasingly receiving attention as new hardware and software become available. To facilitate the adoption of DP, the Swiss Digital Pathology Consortium (SDiPath) organized a Delphi process to produce a series of recommendations for DP integration within Swiss clinical environments. This process saw the creation of 4 working groups, focusing on the various components of a DP system (1) scanners, quality assurance and validation of scans, (2) integration of Whole Slide Image (WSI)-scanners and DP systems into the Pathology Laboratory Information System, (3) digital workflow-compliance with general quality guidelines, and (4) image analysis (IA)/artificial intelligence (AI), with topic experts for each recruited for discussion and statement generation. The work product of the Delphi process is 83 consensus statements presented here, forming the basis for "SDiPath Recommendations for Digital Pathology". They represent an up-to-date resource for national and international hospitals, researchers, device manufacturers, algorithm developers, and all supporting fields, with the intent of providing expectations and best practices to help ensure safe and efficient DP usage.

3.
Pathologie (Heidelb) ; 44(Suppl 3): 225-228, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987815

RESUMO

The Swiss Digital Pathology Consortium (SDiPath) was founded in 2018 as a working group of the Swiss Society for Pathology with the aim of networking, training, and promoting digital pathology (DP) at a national level. Since then, two national surveys have been carried out on the level of knowledge, dissemination, use, and needs in DP, which have resulted in clear fields of action. In addition to organizing symposia and workshops, national guidelines were drawn up and an initiative for a national DP platform actively codesigned. With the growing use of digital image processing and artificial intelligence tools, continuous monitoring, evaluation, and exchange of experiences will be pursued, along with best practices.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Suíça
4.
Pathologie (Heidelb) ; 44(Suppl 3): 222-224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987817

RESUMO

Digital pathology (DP) is increasingly entering routine clinical pathology diagnostics. As digitization of the routine caseload advances, implementation of digital image analysis algorithms and artificial intelligence tools becomes not only attainable, but also desirable in daily sign out. The Swiss Digital Pathology Consortium (SDiPath) has initiated a Delphi process to generate best-practice recommendations for various phases of the process of digitization in pathology for the local Swiss environment, encompassing the following four topics: i) scanners, quality assurance, and validation of scans; ii) integration of scanners and systems into the pathology laboratory information system; iii) the digital workflow; and iv) digital image analysis (DIA)/artificial intelligence (AI). The current article focuses on the DIA-/AI-related recommendations generated and agreed upon by the working group and further verified by the Delphi process among the members of SDiPath. Importantly, they include the view and the currently perceived needs of practicing pathologists from multiple academic and cantonal hospitals as well as private practices.


Assuntos
Inteligência Artificial , Patologia Clínica , Humanos , Suíça , Diagnóstico por Imagem , Patologia Clínica/métodos , Algoritmos
5.
Nat Metab ; 5(8): 1364-1381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37430025

RESUMO

Inflammation in the central nervous system can impair the function of neuronal mitochondria and contributes to axon degeneration in the common neuroinflammatory disease multiple sclerosis (MS). Here we combine cell-type-specific mitochondrial proteomics with in vivo biosensor imaging to dissect how inflammation alters the molecular composition and functional capacity of neuronal mitochondria. We show that neuroinflammatory lesions in the mouse spinal cord cause widespread and persisting axonal ATP deficiency, which precedes mitochondrial oxidation and calcium overload. This axonal energy deficiency is associated with impaired electron transport chain function, but also an upstream imbalance of tricarboxylic acid (TCA) cycle enzymes, with several, including key rate-limiting, enzymes being depleted in neuronal mitochondria in experimental models and in MS lesions. Notably, viral overexpression of individual TCA enzymes can ameliorate the axonal energy deficits in neuroinflammatory lesions, suggesting that TCA cycle dysfunction in MS may be amendable to therapy.


Assuntos
Esclerose Múltipla , Doenças Neuroinflamatórias , Animais , Camundongos , Axônios/patologia , Esclerose Múltipla/patologia , Neurônios/patologia , Inflamação/patologia
6.
Immunity ; 56(4): 813-828.e10, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36809763

RESUMO

T cell factor 1 (Tcf-1) expressing CD8+ T cells exhibit stem-like self-renewing capacity, rendering them key for immune defense against chronic viral infection and cancer. Yet, the signals that promote the formation and maintenance of these stem-like CD8+ T cells (CD8+SL) remain poorly defined. Studying CD8+ T cell differentiation in mice with chronic viral infection, we identified the alarmin interleukin-33 (IL-33) as pivotal for the expansion and stem-like functioning of CD8+SL as well as for virus control. IL-33 receptor (ST2)-deficient CD8+ T cells exhibited biased end differentiation and premature loss of Tcf-1. ST2-deficient CD8+SL responses were restored by blockade of type I interferon signaling, suggesting that IL-33 balances IFN-I effects to control CD8+SL formation in chronic infection. IL-33 signals broadly augmented chromatin accessibility in CD8+SL and determined these cells' re-expansion potential. Our study identifies the IL-33-ST2 axis as an important CD8+SL-promoting pathway in the context of chronic viral infection.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-33 , Coriomeningite Linfocítica , Animais , Camundongos , Alarminas/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica , Camundongos Endogâmicos C57BL , Infecção Persistente , Fator 1 de Transcrição de Linfócitos T/metabolismo
7.
Acta Neuropathol ; 145(3): 335-355, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695896

RESUMO

B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.


Assuntos
Células Produtoras de Anticorpos , Autoantígenos , Camundongos , Animais , Linfócitos B , Vírus da Coriomeningite Linfocítica , Encéfalo
8.
EMBO Rep ; 24(3): e55328, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36715148

RESUMO

The vasculature is a key regulator of leukocyte trafficking into the central nervous system (CNS) during inflammatory diseases including multiple sclerosis (MS). However, the impact of endothelial-derived factors on CNS immune responses remains unknown. Bioactive lipids, in particular oxysterols downstream of Cholesterol-25-hydroxylase (Ch25h), promote neuroinflammation but their functions in the CNS are not well-understood. Using floxed-reporter Ch25h knock-in mice, we trace Ch25h expression to CNS endothelial cells (ECs) and myeloid cells and demonstrate that Ch25h ablation specifically from ECs attenuates experimental autoimmune encephalomyelitis (EAE). Mechanistically, inflamed Ch25h-deficient CNS ECs display altered lipid metabolism favoring polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) expansion, which suppresses encephalitogenic T lymphocyte proliferation. Additionally, endothelial Ch25h-deficiency combined with immature neutrophil mobilization into the blood circulation nearly completely protects mice from EAE. Our findings reveal a central role for CNS endothelial Ch25h in promoting neuroinflammation by inhibiting the expansion of immunosuppressive myeloid cell populations.


Assuntos
Encefalomielite Autoimune Experimental , Oxisteróis , Camundongos , Animais , Células Endoteliais/metabolismo , Oxisteróis/metabolismo , Doenças Neuroinflamatórias , Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos C57BL
9.
Brain ; 145(8): 2730-2741, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808999

RESUMO

Glial cell activation is a hallmark of several neurodegenerative and neuroinflammatory diseases. During HIV infection, neuroinflammation is associated with cognitive impairment, even during sustained long-term suppressive antiretroviral therapy. However, the cellular subsets contributing to neuronal damage in the CNS during HIV infection remain unclear. Using post-mortem brain samples from eight HIV patients and eight non-neurological disease controls, we identify a subset of CNS phagocytes highly enriched in LGALS3, CTSB, GPNMB and HLA-DR, a signature identified in the context of ageing and neurodegeneration. In HIV patients, the presence of this phagocyte phenotype was associated with synaptic stripping, suggesting an involvement in the pathogenesis of HIV-associated neurocognitive disorder. Taken together, our findings elucidate some of the molecular signatures adopted by CNS phagocytes in HIV-positive patients and contribute to the understanding of how HIV might pave the way to other forms of cognitive decline in ageing HIV patient populations.


Assuntos
Infecções por HIV , Fagócitos , Sinapses , Encéfalo/patologia , Encéfalo/virologia , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Glicoproteínas de Membrana , Transtornos Neurocognitivos , Neurônios/patologia , Neurônios/virologia , Fagócitos/metabolismo , Fagócitos/patologia , Sinapses/patologia , Sinapses/virologia
10.
Nat Commun ; 13(1): 2659, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551446

RESUMO

Traumatic brain injury (TBI) results in deficits that are often followed by recovery. The contralesional cortex can contribute to this process but how distinct contralesional neurons and circuits respond to injury remains to be determined. To unravel adaptations in the contralesional cortex, we used chronic in vivo two-photon imaging. We observed a general decrease in spine density with concomitant changes in spine dynamics over time. With retrograde co-labeling techniques, we showed that callosal neurons are uniquely affected by and responsive to TBI. To elucidate circuit connectivity, we used monosynaptic rabies tracing, clearing techniques and histology. We demonstrate that contralesional callosal neurons adapt their input circuitry by strengthening ipsilateral connections from pre-connected areas. Finally, functional in vivo two-photon imaging demonstrates that the restoration of pre-synaptic circuitry parallels the restoration of callosal activity patterns. Taken together our study thus delineates how callosal neurons structurally and functionally adapt following a contralateral murine TBI.


Assuntos
Lesões Encefálicas Traumáticas , Corpo Caloso , Animais , Córtex Cerebral , Corpo Caloso/fisiologia , Camundongos , Neurônios/fisiologia
11.
J Alzheimers Dis Rep ; 6(1): 101-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530117

RESUMO

Background: In patients with Alzheimer's disease (AD), bacterial infections are often associated with a cognitive decline. Animal models of genuine acute infections with viable bacteria which induce deterioration of neurodegenerative diseases are missing. Objective: We assessed the effect of an intracerebral infection with E. coli in a mouse model of AD. Methods: 13-month-old Tg2576 +/- mice and transgene negative littermates (Tg2576 -/-) received an intracerebral injection with E. coli K1 or saline followed by treatment with ceftriaxone starting 41 h post infection (p.i.) for 5 days. For 4 weeks, mice were monitored for clinical status, weight, motor functions, and neuropsychological status using the Morris water maze. ELISAs, stainings, and immunohistochemistry in brains were performed at the end of the experiment. Results: Mortality of the infection was approximately 20%. After 4 weeks, spatial learning of infected Tg2576 +/- mice was compromised compared to non-infected Tg2576 +/- mice (p < 0.05). E. coli infection did not influence spatial learning in Tg2576 -/- mice, or spatial memory in both Tg2576 +/- and -/- mice within 4 weeks p.i.. Necrosis of hippocampal neurons was induced in infected compared to non-infected Tg2576 +/- mice 4 weeks p.i., whereas brain concentrations of Aß1-40, Aß1-42, and phosphoTau as well as axonal damage and microglia density were not altered. Conclusion: Here, we proved in principle that a genuine acute bacterial infection can worsen cognitive functions of AD mice. Mouse models of subacute systemic infections are needed to develop new strategies for the treatment of bacterial infections in patients with AD in order to minimize their cognitive decline.

12.
Sci Transl Med ; 14(640): eabl6058, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417190

RESUMO

In chronic inflammatory diseases of the central nervous system (CNS), immune cells persisting behind the blood-brain barrier are supposed to promulgate local tissue destruction. The drivers of such compartmentalized inflammation remain unclear, but tissue-resident memory T cells (TRM) represent a potentially important cellular player in this process. Here, we investigated whether resting CD8+ TRM persisting after cleared infection with attenuated lymphocytic choriomeningitis virus (LCMV) can initiate immune responses directed against cognate self-antigen in the CNS. We demonstrated that time-delayed conditional expression of the LCMV glycoprotein as neo-self-antigen by glia cells reactivated CD8+ TRM. Subsequently, CD8+ TRM expanded and initiated CNS inflammation and immunopathology in an organ-autonomous manner independently of circulating CD8+ T cells. However, in the absence of CD4+ T cells, TCF-1+ CD8+ TRM failed to expand and differentiate into terminal effectors. Similarly, in human demyelinating CNS autoimmune lesions, we found CD8+ T cells expressing TCF-1 that predominantly exhibited a TRM-like phenotype. Together, our study provides evidence for CD8+ TRM-driven CNS immunopathology and sheds light on why inflammatory processes may evade current immunomodulatory treatments in chronic autoimmune CNS conditions.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Autoantígenos , Linfócitos T CD4-Positivos , Sistema Nervoso Central , Humanos , Inflamação , Vírus da Coriomeningite Linfocítica
13.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269842

RESUMO

Mycobacterium tuberculosis (Mtb) represents a major burden to global health, and refined vaccines are needed. Replication-deficient lymphocytic choriomeningitis virus (rLCMV)-based vaccine vectors against cytomegalovirus have proven safe for human use and elicited robust T cell responses in a large proportion of vaccine recipients. Here, we developed an rLCMV vaccine expressing the Mtb antigens TB10.4 and Ag85B. In mice, rLCMV elicited high frequencies of polyfunctional Mtb-specific CD8 and CD4 T cell responses. CD8 but not CD4 T cells were efficiently boosted upon vector re-vaccination. High-frequency responses were also observed in neonatally vaccinated mice, and co-administration of rLCMV with Expanded Program of Immunization (EPI) vaccines did not result in substantial reciprocal interference. Importantly, rLCMV immunization significantly reduced the lung Mtb burden upon aerosol challenge, resulting in improved lung ventilation. Protection was associated with increased CD8 T cell recruitment but reduced CD4 T cell infiltration upon Mtb challenge. When combining rLCMV with BCG vaccination in a heterologous prime-boost regimen, responses to the rLCMV-encoded Mtb antigens were further augmented, but protection was not significantly different from rLCMV or BCG vaccination alone. This work suggests that rLCMV may show utility for neonatal and/or adult vaccination efforts against pulmonary tuberculosis.


Assuntos
Mycobacterium tuberculosis , Animais , Antígenos de Bactérias , Vacina BCG , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Mycobacterium tuberculosis/genética
14.
Cell Rep ; 38(5): 110303, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108544

RESUMO

Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.


Assuntos
Anticorpos Antivirais/farmacologia , Antivirais/farmacologia , Anticorpos Anti-HIV/farmacologia , Receptores Fc/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Epitopos/efeitos dos fármacos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Imunoglobulina G/efeitos dos fármacos , Imunoglobulina G/imunologia , Camundongos Endogâmicos C57BL , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/imunologia
15.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772811

RESUMO

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)-driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called "decimation," of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I-driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell-intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell-mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell-based vaccination against persistent viral diseases.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecção Persistente/imunologia , Vacinas/imunologia , Viroses/imunologia , Animais , Anticorpos Antivirais/imunologia , Apresentação de Antígeno/imunologia , Antivirais/imunologia , Células Cultivadas , Centro Germinativo/imunologia , Inflamação/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Vacinação/métodos
16.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782467

RESUMO

Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron spine numbers. By providing evidence that CYLD can modulate mechanistic target of rapamycin (mTOR) signaling and autophagy at the synapse, we propose that synaptic K63-linked ubiquitination processes could be fundamental in understanding the pathomechanisms underlying autism spectrum disorder.


Assuntos
Autofagia/fisiologia , Hipocampo/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Transtorno do Espectro Autista , Transtorno Autístico , Enzima Desubiquitinante CYLD , Feminino , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Sinapses/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
17.
Cell Metab ; 33(11): 2231-2246.e8, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687652

RESUMO

Autoimmunity is energetically costly, but the impact of a metabolically active state on immunity and immune-mediated diseases is unclear. Ly6Chi monocytes are key effectors in CNS autoimmunity with an elusive role in priming naive autoreactive T cells. Here, we provide unbiased analysis of the immune changes in various compartments during cold exposure and show that this energetically costly stimulus markedly ameliorates active experimental autoimmune encephalomyelitis (EAE). Cold exposure decreases MHCII on monocytes at steady state and in various inflammatory mouse models and suppresses T cell priming and pathogenicity through the modulation of monocytes. Genetic or antibody-mediated monocyte depletion or adoptive transfer of Th1- or Th17-polarized cells for EAE abolishes the cold-induced effects on T cells or EAE, respectively. These findings provide a mechanistic link between environmental temperature and neuroinflammation and suggest competition between cold-induced metabolic adaptations and autoimmunity as energetic trade-off beneficial for the immune-mediated diseases.


Assuntos
Encefalomielite Autoimune Experimental , Doenças Neuroinflamatórias , Transferência Adotiva , Animais , Autoimunidade , Camundongos , Camundongos Endogâmicos C57BL , Células Th17
18.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34398180

RESUMO

Several RNA viruses can establish life-long persistent infection in mammalian hosts, but the fate of individual virus-infected cells remains undefined. Here we used Cre recombinase-encoding lymphocytic choriomeningitis virus to establish persistent infection in fluorescent cell fate reporter mice. Virus-infected hepatocytes underwent spontaneous noncytolytic viral clearance independently of type I or type II interferon signaling or adaptive immunity. Viral clearance was accompanied by persistent transcriptomic footprints related to proliferation and extracellular matrix remodeling, immune responses, and metabolism. Substantial overlap with persistent epigenetic alterations in HCV-cured patients suggested a universal RNA virus-induced transcriptomic footprint. Cell-intrinsic clearance occurred in cell culture, too, with sequential infection, reinfection cycles separated by a period of relative refractoriness to infection. Our study reveals that systemic persistence of a prototypic noncytolytic RNA virus depends on continuous spread and reinfection. Yet undefined cell-intrinsic mechanisms prevent viral persistence at the single-cell level but give way to profound transcriptomic alterations in virus-cleared cells.


Assuntos
Infecções por Arenaviridae/genética , Infecções por Arenaviridae/virologia , Hepatócitos/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Imunidade Adaptativa , Animais , Infecções por Arenaviridae/patologia , Chlorocebus aethiops , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Interferons/metabolismo , Vírus da Coriomeningite Linfocítica/genética , Camundongos Transgênicos , Reinfecção , Análise de Célula Única , Células Vero , Carga Viral , Proteínas Virais/metabolismo
20.
Nat Commun ; 12(1): 2538, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953160

RESUMO

Group 2 innate lymphoid cells (ILC2s) play a critical role in protection against helminths and in diverse inflammatory diseases by responding to soluble factors such as the alarmin IL-33, that is often overexpressed in cancer. Nonetheless, regulatory factors that dictate ILC2 functions remain poorly studied. Here, we show that peroxisome proliferator-activated receptor gamma (PPARγ) is selectively expressed in ILC2s in humans and in mice, acting as a central functional regulator. Pharmacologic inhibition or genetic deletion of PPARγ in ILC2s significantly impair IL-33-induced Type-2 cytokine production and mitochondrial fitness. Further, PPARγ blockade in ILC2s disrupts their pro-tumoral effect induced by IL-33-secreting cancer cells. Lastly, genetic ablation of PPARγ in ILC2s significantly suppresses tumor growth in vivo. Our findings highlight a crucial role for PPARγ in supporting the IL-33 dependent pro-tumorigenic role of ILC2s and suggest that PPARγ can be considered as a druggable pathway in ILC2s to inhibit their effector functions. Hence, PPARγ targeting might be exploited in cancer immunotherapy and in other ILC2-driven mediated disorders, such as asthma and allergy.


Assuntos
Imunidade Inata/imunologia , Interleucina-33/metabolismo , Linfócitos/metabolismo , Neoplasias/terapia , PPAR gama/metabolismo , Animais , Asma , Citocinas/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Hipersensibilidade , Imunoterapia , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Neoplasias/patologia , PPAR gama/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...